
threedi-api-client

Nelen & Schuurmans

Aug 25, 2023

CONTENTS:

1 Features 3

2 Installation 5

3 Credits 7
3.1 API Reference . 7

Python Module Index 19

Index 21

i

ii

threedi-api-client

• A Python library for interfacing with the 3Di API

• Free software: BSD license

• Documentation: https://threedi-api-client.readthedocs.io

CONTENTS: 1

https://threedi-api-client.readthedocs.io/en/latest/?badge=latest
https://pypi.python.org/pypi/threedi-api-client
https://github.com/nens/threedi-api-client/actions/workflows/test.yml
https://threedi-api-client.readthedocs.io

threedi-api-client

2 CONTENTS:

CHAPTER

ONE

FEATURES

• Object-oriented API interaction generated with https://openapi-generator.tech/.

• Asynchronous support.

• Advanced file download and upload utility functions.

3

https://openapi-generator.tech/

threedi-api-client

4 Chapter 1. Features

CHAPTER

TWO

INSTALLATION

We recommend pip to install this package:

pip install --user threedi-api-client

If async support is required, install as follows:

pip install --user threedi-api-client[aio]

5

threedi-api-client

6 Chapter 2. Installation

CHAPTER

THREE

CREDITS

The OpenAPI client has been generated with OpenAPI generator (https://openapi-generator.tech/), which is licensed
under the Apache License 2.0.

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

3.1 API Reference

3.1.1 Usage

The threedi_api_client.ThreediApi is the main entry point to make calls to the 3Di API. It handles the login
process for you and can be directly used as client for all API endpoints.

In earlier versions of this library the main entry point was threedi_api_client.ThreediApiClient. This method
will remain available until threedi_api_client version 4.0. Read below how to migrate from ThreediApiClient
to ThreediApi.

class threedi_api_client.ThreediApi(env_file=None, config=None, version='v3', asynchronous=False,
retries=3)

Client for the 3Di API.

The API object exposes numerous methods that interface with the API, all named according to the pattern
{resource}_{action}, for example simulations_list. Consult the docstrings of these methods for fur-
ther information

ThreediApi requires a THREEDI_API_HOST and user credentials. These can either be stored in a .env file,
supplied via environment variables, or passed as a config dictionary.

The preferred way of setting user credentials is using a “Personal API Key” in the vari-
able ‘THREEDI_API_PERSONAL_API_TOKEN’. Using ‘THREEDI_API_USERNAME’ and
‘THREEDI_API_PASSWORD’ to authenticate is also supported, but considered legacy. Consider upgrading to
personal API keys if you are using this form of authentication.

1) A sample .env file could look like this:

THREEDI_API_HOST=https://api.3di.live
THREEDI_API_PERSONAL_API_TOKEN=lHtKAuCV.secret123

This is used in your script as follows:

from threedi_api_client import ThreediApi

env_file = "<path>/.env"
(continues on next page)

7

https://openapi-generator.tech/
https://github.com/audreyr/cookiecutter
https://github.com/audreyr/cookiecutter-pypackage

threedi-api-client

(continued from previous page)

with ThreediApi(env_file=env_file) as api:
...

2) The same variables can be set as environment variables from the terminal that you use to run the python
interpreter with. On Windows:

set THREEDI_API_HOST "https://api.3di.live"
set THREEDI_API_PERSONAL_API_TOKEN "lHtKAuCV.secret123"

On Linux or OSX:

export THREEDI_API_HOST=https://api.3di.live
export THREEDI_API_PERSONAL_API_TOKEN=lHtKAuCV.secret123

3) The config keyword argument can be used like:

from threedi_api_client import ThreediApi
from getpass import getpass

config = {
"THREEDI_API_HOST": "https://api.3di.live",
"THREEDI_API_PERSONAL_API_TOKEN": getpass(),

}

with ThreediApi(config=config) as api:
...

Parameters

• env_file (str or pathlib.Path) – path to a configuration file

• config (dict) – configuration dictionary for this client

• version (str) – the API version to use (default: ‘v3’)

• asynchronous (bool) – whether to return an asynchronous API client for usage with asyn-
cio. Note: this requires installation of threedi_api_client[aio].

• retries (int or object) – the number of retries; see notes section for more granular
control over the retry policy

Returns
This class constructs an Api object that was autogenerated by the OpenAPI generator. The auto-
generated code lives under threedi_api_client.openapi.

8 Chapter 3. Credits

threedi-api-client

Notes

OAuth2 For using OAuth2, supply an THREEDI_API_ACCESS_TOKEN. If the
THREEDI_API_ACCESS_TOKEN has expired, there are 3 methods implemented for automatic token
renewal:

• refresh token without client secret: supply a THREEDI_API_REFRESH_TOKEN

• refresh token with client secret: supply a THREEDI_API_REFRESH_TOKEN and
THREEDI_API_CLIENT_SECRET

• client credentials flow: supply a THREEDI_API_CLIENT_SECRET

Timeouts

A request without a timeout may block your python script indefinitely. It is always a good idea to prevent this
by setting a timeout. Do this using the _request_timeout parameter on every api request. It is currently not
possible to configure a default timeout.

Retry policy

It is common to configure a retry policy to prevent exceptions due to the service being temporarily unavailable.
The ThreediApi supports this through the retries parameter. Due to different backends, the configuration
details differ between synchronous and asynchronous usage.

For basic usage, supply an integer (which is the maximum number of retries):

>>> api = ThreediApi(..., retries=3)

For synchronous usage, you may also supply a urllib3.util.Retry object (see urllib3 docs):

>>> import urllib3
>>> policy = urllib3.util.Retry(total=3, backoff_factor=1.0)
>>> api = ThreediApi(..., retries=policy)

For asynchronous usage, you may also supply a aiohttp_retry.ExponentialRetry object. See the aio-
http_retry docs). The aiohttp_retry package is shipped with threedi_api_client.

>>> from threedi_api_client.aio import aiohttp_retry
>>> policy = aiohttp_retry.ExponentialRetry(attempts=3, factor=1.0)
>>> api = ThreediApi(..., retries=policy)

Other configuration options are:

- the exceptions on which to retry (default: None)
- the statuses on which to retry (default: 413, 429, 503, 504)
- the HTTP methods on which to retry (default: 'DELETE', 'GET', 'HEAD', 'OPTIONS',
→˓'PUT', 'TRACE')

3.1. API Reference 9

https://urllib3.readthedocs.io/en/stable/user-guide.html#retrying-requests
https://github.com/inyutin/aiohttp_retry
https://github.com/inyutin/aiohttp_retry

threedi-api-client

Migration from ThreediApiClient

Formerly, the threedi_api_client.ThreediApiClient was used to interact with the 3Di API. As of
threedi_api_client version 4, this method is deprecated. Currently, both methods are allowed, but the legacy
one will give warnings.

There are three changes:

1. The ThreediApi object directly exposes methods to interact with 3Di API resources. There is no need of
separately constructing api objects for each resource. The root package openapi_client will disappear in
future versions: do not import it anymore. Direct access to the (new) generated API code is possible through
threedi_api_client.openapi.

2. The configuration variables are now prefixed with "THREEDI_API_" instead of "API_".

3. The "THREEDI_API_HOST" must not include the version.

4. Advanced users of the asynchronous client (imported from threedi_api_client.aio) should start using
threedi_api_client.ThreediApi with asynchronous=True.

Take for example a script that looks like this:

from threedi_api_client import ThreediApiClient
from openapi_client import SimulationsApi

config = {
"API_HOST": "https://api.3di.live/v3.0"
"API_USERNAME": "your.username"
"API_PASSWORD": "your.password"

}

with ThreediApiClient(config=config) as api_client:
api = SimulationsApi(api_client)
result = api.simulations_list()

Applying the changes listed above, it is refactored to this:

from threedi_api_client import ThreediApi

config = {
"THREEDI_API_HOST": "https://api.3di.live", # no version!
"THREEDI_API_PERSONAL_API_TOKEN": "your_personal_api_token_here"

}

with ThreediApi(config=config) as api:
result = api.simulations_list()

10 Chapter 3. Credits

threedi-api-client

3.1.2 Download/upload

This library supplies utility functions for file downloading and uploading. The functions support automatic retries,
multipart downloads and streaming uploads. Their usage is described below.

Synchronous

threedi_api_client.files.download_file(url: str, target: Path, chunk_size: int = 16777216, timeout:
Optional[Union[float, Timeout]] = 5.0, pool:
Optional[PoolManager] = None, callback_func:
Optional[Callable[[int, int], None]] = None)→ Tuple[Path, int]

Download a file to a specified path on disk.

It is assumed that the file server supports multipart downloads (range requests).

Parameters

• url – The url to retrieve.

• target – The location to copy to. If this is an existing file, it is overwritten. If it is a directory,
a filename is generated from the filename in the url.

• chunk_size – The number of bytes per request. Default: 16MB.

• timeout – The total timeout in seconds.

• pool – If not supplied, a default connection pool will be created with a retry policy of 3
retries after 1, 2, 4 seconds.

• callback_func – optional function used to receive: bytes_downloaded, total_bytes for ex-
ample: def callback(bytes_downloaded: int, total_bytes: int) -> None

Returns
Tuple of file path, total number of downloaded bytes.

Raises

• threedi_api_client.openapi.ApiException – raised on unexpected server responses
(HTTP status codes other than 206, 413, 429, 503)

• urllib3.exceptions.HTTPError – various low-level HTTP errors that persist after retry-
ing: connection errors, timeouts, decode errors, invalid HTTP headers, payload too large
(HTTP 413), too many requests (HTTP 429), service unavailable (HTTP 503)

threedi_api_client.files.upload_file(url: str, file_path: Path, chunk_size: int = 16777216, timeout:
Optional[Union[float, Timeout]] = None, pool:
Optional[PoolManager] = None, md5: Optional[bytes] = None,
callback_func: Optional[Callable[[int, int], None]] = None,
headers: Optional[Dict] = None)→ int

Upload a file at specified file path to a url.

Parameters

• url – The url to upload to.

• file_path – The file path to read data from.

• chunk_size – The size of the chunk in the streaming upload. Note that this function does
not do multipart upload. Default: 16MB.

• timeout – The total timeout in seconds. The default is a connect timeout of 5 seconds and
a read timeout of 10 minutes.

3.1. API Reference 11

threedi-api-client

• pool – If not supplied, a default connection pool will be created with a retry policy of 3
retries after 1, 2, 4 seconds.

• md5 – The MD5 digest (binary) of the file. Supply the MD5 to enable server-side integrity
check. Note that when using presigned urls in AWS S3, the md5 hash should be included in
the signing procedure.

• callback_func – optional function used to receive: bytes_uploaded, total_bytes for exam-
ple: def callback(bytes_uploaded: int, total_bytes: int) -> None

• headers – optional extra headers for the PUT request.

Returns
The total number of uploaded bytes.

Raises

• IOError – Raised if the provided file is incompatible or empty.

• threedi_api_client.openapi.ApiException – raised on unexpected server responses
(HTTP status codes other than 206, 413, 429, 503)

• urllib3.exceptions.HTTPError – various low-level HTTP errors that persist after retry-
ing: connection errors, timeouts, decode errors, invalid HTTP headers, payload too large
(HTTP 413), too many requests (HTTP 429), service unavailable (HTTP 503)

Asynchronous

async threedi_api_client.aio.files.download_file(url: str, target: Path, chunk_size: int = 16777216,
timeout: Optional[Union[float, ClientTimeout]] =
None, connector: Optional[BaseConnector] = None,
executor: Optional[ThreadPoolExecutor] = None,
retries: int = 3, backoff_factor: float = 1.0,
callback_func: Optional[Callable[[int, int],
Awaitable[None]]] = None)→ Tuple[Path, int]

Download a file to a specified path on disk.

It is assumed that the file server supports multipart downloads (range requests).

Parameters

• url – The url to retrieve.

• target – The location to copy to. If this is an existing file, it is overwritten. If it is a directory,
a filename is generated from the filename in the url.

• chunk_size – The number of bytes per request. Default: 16MB.

• timeout – The total timeout of the download of a single chunk in seconds. By default, there
is no total timeout, but only socket timeouts of 5s.

• connector – An optional aiohttp connector to support connection pooling. If not supplied,
a default TCPConnector is instantiated with a pool size (limit) of 4.

• executor – The ThreadPoolExecutor to execute local file I/O in. If not supplied, default
executor is used.

• retries – Total number of retries per request.

• backoff_factor – Multiplier for retry delay times (1, 2, 4, . . .)

12 Chapter 3. Credits

threedi-api-client

• callback_func – optional async function used to receive: bytes_downloaded, total_bytes
for example: async def callback(bytes_downloaded: int, total_bytes: int) -> None

Returns
Tuple of file path, total number of uploaded bytes.

Raises

• threedi_api_client.openapi.ApiException – raised on unexpected server responses
(HTTP status codes other than 206, 413, 429, 503)

• aiohttp.ClientError – various low-level HTTP errors that persist after retrying: connec-
tion errors, timeouts, decode errors, invalid HTTP headers, payload too large (HTTP 413),
too many requests (HTTP 429), service unavailable (HTTP 503)

async threedi_api_client.aio.files.upload_file(url: str, file_path: Path, chunk_size: int = 16777216,
timeout: Optional[Union[float, ClientTimeout]] =
None, connector: Optional[BaseConnector] = None,
md5: Optional[bytes] = None, executor:
Optional[ThreadPoolExecutor] = None, retries: int =
3, backoff_factor: float = 1.0, callback_func:
Optional[Callable[[int, int], Awaitable[None]]] =
None)→ int

Upload a file at specified file path to a url.

Parameters

• url – The url to upload to.

• file_path – The file path to read data from.

• chunk_size – The size of the chunk in the streaming upload. Note that this function does
not do multipart upload. Default: 16MB.

• timeout – The total timeout of the upload in seconds. By default, there is no total timeout,
but only socket connect timeout of 5 seconds and a socket read timeout of 10 minutes.

• connector – An optional aiohttp connector to support connection pooling.

• md5 – The MD5 digest (binary) of the file. Supply the MD5 to enable server-side integrity
check. Note that when using presigned urls in AWS S3, the md5 hash should be included in
the signing procedure.

• executor – The ThreadPoolExecutor to execute local file I/O and MD5 hashing in. If not
supplied, default executor is used.

• retries – Total number of retries per request.

• backoff_factor – Multiplier for retry delay times (1, 2, 4, . . .)

• callback_func – optional async function used to receive: bytes_uploaded, total_bytes for
example: async def callback(bytes_uploaded: int, total_bytes: int) -> None

Returns
The total number of uploaded bytes.

Raises

• IOError – Raised if the provided file is incompatible or empty.

• threedi_api_client.openapi.ApiException – raised on unexpected server responses
(HTTP status codes other than 206, 413, 429, 503)

3.1. API Reference 13

threedi-api-client

• aiohttp.ClientError – various low-level HTTP errors that persist after retrying: connec-
tion errors, timeouts, decode errors, invalid HTTP headers, payload too large (HTTP 413),
too many requests (HTTP 429), service unavailable (HTTP 503)

3.1.3 Examples

First, get an instance of the ThreediApi:

from threedi_api_client import ThreediApi
env_file = "<path>/.env"
api = ThreediApi(env_file)

Now you can easily make use of the api models generated by the openapi client. Let us create a simulation. We will
use a Simulation model instance to pass data to the API. Some fields are optional but we do need to specify:

• the unique organisation ID we want to run the simulation for

• the model schema to use for the simulation by referring to the id of the threedimodel resource

• datetime (in ISO 8601 (UTC) format) for the simulation start

• either a end datetime (also in ISO 8601 (UTC) format) or the duration parameter in seconds

If you do not know the unique ID for your organisation you can make use of the API to request it.

api.organisations_list(name__istartswith="nelen")
{'count': 2,
'next': None,
'previous': None,
'results': [{'name': 'Nelen & Schuurmans',

'unique_id': 'b8f91de705774fe8a4e7cb2d9413bf5c',
'url': 'https://api.3di.live/v3.0/organisations/61f5a464c35044c19bc7d4b42d7f58cb/'}

→˓,
{'name': 'Nelen & Schuurmans alleen werknemers',
'unique_id': 'e82c74c4fb5846b3ae990c0cc69130c6',
'url': 'https://api.3di.live/v3.0/organisations/cde64bc165644be9af023fc4fa18d098/'}

→˓]}

Now we can create the Simulation model instance.

from threedi_api_client.openapi import Simulation

start date will be a datetime object
from datetime import datetime

my_extreme_event_simulation = Simulation(
name="my extreme event", # (optional)
threedimodel=1, # The model schema to use for the simulation by␣

→˓referring to the id of the threedimodel resource
organisation='b8f91de705774fe8a4e7cb2d9413bf5c',
start_datetime=datetime.utcnow(), # accepts datetime instance
duration=7200 # in secs ==> 2 hours

)

The simulations_create method allows you to create a new Simulation resource.

14 Chapter 3. Credits

threedi-api-client

api.simulations_create(my_extreme_event_simulation)
{'created': 'now',
'duration': 7200,
'duration_humanized': '2 hours, 0 minutes, 0 seconds',
'end_datetime': '2019-11-04T16:19:46Z',
'id': 631,
'name': 'my extreme event',
'organisation': 'b8f91de705774fe8a4e7cb2d9413bf5c',
'organisation_name': 'Nelen & Schuurmans',
'slug': 'my-extreme-event-378f55a5-06df-4021-8fb6-65bbb70519dc',
'start_datetime': '2019-11-04T14:19:46Z',
'threedimodel': 'https://api.3di.live/v3.0/threedimodels/1/',
'threedimodel_id': '1',
'url': 'https://api.3di.live/v3.0/simulations/631/',
'user': 'lars.claussen',
'uuid': '378f55a5-06df-4021-8fb6-65bbb70519dc'}

Simulations allow for adding an arbitrary number of events to them like

• rain events

• sources and sinks

• initial conditions

• laterals

• saved states

• structure controls

All of them have their own openapi client model. To add a constant rain event to the simulation you would do the
following.

from threedi_api_client.openapi import ConstantRain
const_rain = ConstantRain(

simulation=631, # the ID we got from our create call above
offset=60, # let the rain start after one minute
duration=5000, # let the rain last for 5000 secs
value=0.0006, # not too extreme after all...;-)
units="m/s" # the only unit supported for now

)
api.simulations_events_rain_constant_create(631, const_rain)
{'duration': 5000,
'offset': 60,
'simulation': 'https://api.3di.live/v3.0/simulations/631/',
'units': 'm/s',
'url': 'https://api.3di.live/v3.0/simulations/631/events/rain/constant/17/',
'value': 0.0006}

If you want to see which events are defined on a given simulation

api.simulations_events(631)
{'boundaries': None,
'breach': [],
'filerasterrain': [],

(continues on next page)

3.1. API Reference 15

threedi-api-client

(continued from previous page)

'filerastersourcessinks': [],
'filetimeseriesrain': [],
'filetimeseriessourcessinks': [],
'initial_groundwaterlevel': None,
'initial_onedwaterlevel': None,
'initial_onedwaterlevelpredefined': None,
'initial_savedstate': None,
'initial_twodwaterlevel': None,
'laterals': [],
'lizardrasterrain': [],
'lizardrastersourcessinks': [],
'lizardtimeseriesrain': [],
'lizardtimeseriessourcessinks': [],
'savedstates': [],
'timedstructurecontrol': [],
'timeseriesrain': [{'constant': True,

'duration': 5000,
'interpolate': False,
'offset': 60,
'simulation': 'https://api.3di.live/v3.0/simulations/631/',
'units': 'm/s',
'url': 'https://api.3di.live/v3.0/simulations/631/events/rain/timeseries/

→˓17/',
'values': [[0.0, 0.0006], [5000.0, 0.0]]}],

'timeseriessourcessinks': []}

Advanced usage

See below for an example of uploading a rain raster.

from pathlib import Path
from threedi_api_client.files import upload_file

simulation_pk = 1
filename = 'bergermeer_rasters_from_geotiffs.nc'
local_file_path = Path('./data/bergermeer_rasters_from_geotiffs.nc')

Create rain raster upload resource in API
returns a 'file_upload' instance containing a
put_url property which is the URL to the object
storage object to be uploaded with an HTTP PUT requests.
file_upload = api.simulations_events_rain_rasters_upload(

filename, simulation_pk)

Upload the file
upload_file(file_upload.put_url, local_file_path)

16 Chapter 3. Credits

threedi-api-client

Async client

This project also provides an asynchronous api client. To use the async-client make sure you install the optional de-
pendencies using pip install threedi-api-client[aio] and then import from the aio submodule. The async-
client works the same as the synchronous client, except all api calls are coroutines.

For example, to asynchronously request files from the api:

import asyncio

from threedi_api_client.api import ThreediApi
from threedi_api_client.openapi.api.v3_api import V3Api

config = {
"THREEDI_API_HOST": "https://api.3di.live",
"THREEDI_API_PERSONAL_API_TOKEN": "your_personal_api_token_here"

}

async def main():
async with ThreediApi(config=config) as api_client:

api_client: V3Api
print(await api_client.files_list())

if __name__ == '__main__':
asyncio.run(main())

3.1. API Reference 17

threedi-api-client

18 Chapter 3. Credits

PYTHON MODULE INDEX

t
threedi_api_client.aio.files, 12
threedi_api_client.files, 11

19

threedi-api-client

20 Python Module Index

INDEX

D
download_file() (in module

threedi_api_client.aio.files), 12
download_file() (in module threedi_api_client.files),

11

M
module

threedi_api_client.aio.files, 12
threedi_api_client.files, 11

T
threedi_api_client.aio.files

module, 12
threedi_api_client.files

module, 11
ThreediApi (class in threedi_api_client), 7

U
upload_file() (in module threedi_api_client.aio.files),

13
upload_file() (in module threedi_api_client.files), 11

21

	Features
	Installation
	Credits
	API Reference
	Usage
	Migration from ThreediApiClient

	Download/upload
	Synchronous
	Asynchronous

	Examples
	Advanced usage
	Async client

	Python Module Index
	Index

